

Mathematics Specialist Units 1,2 Test 6 2018

Proof, Complex Numbers

STUDENT'S NAI	AE		
DATE: Monday 17 September		TIME: 50 minutes	MARKS: 52
INSTRUCTIONS Standard Items: Questions or parts of q	Pens, pencils, drawi	ng templates, eraser, notes on one side of a s	
1. (3 marks)			

Express the recurring decimal 21.357575757..... as a rational number.

$$x = 21.357$$

$$10 x = 213.57$$

$$1000 x = 21357.57$$

$$990x = 21144$$

$$x = 21144$$

$$990$$

2. (6 marks)

(a) Given $(PQ)^3 = I$, show $QPQ = P^{-1}Q^{-1}P^{-1}$ where I is the identity matrix, P and Q are non-singular square matrices. [2]

$$PQPQPQ = T$$

$$QPQPQ = P^{-1}$$

$$PQPQ = Q^{-1}P^{-1}$$

$$QPQ = P^{-1}Q^{-1}P^{-1}$$

(b) If matrix A is such that $A^2 = 4A - 7I$ where I is the identity matrix. Express A^4 in the form pA + qI. [4]

$$A^{4} = A^{2} A^{2}$$

$$= (4A - 7I)(4A - 7I)$$

$$= 16A^{2} - 28A - 28A + 49I$$

$$= 16(4A - 7I) - 56A + 49I$$

$$= 64A - 112I - 56A + 49I$$

$$= 8A - 63I$$

3. (4 marks)

Determine two numbers which have a sum of 3 and a product of 3.

$$A + B = 3$$

$$B = 3 - A$$

$$A(3-A) = 3$$

$$0 = A^{2} - 3A + 3$$

$$A = 3 + \sqrt{9 - 12}$$

$$= 3 + \sqrt{5 - 3}$$

$$= 3 + i\sqrt{3}$$

- 4. (8 marks)
 - (a) Prove, by contradiction, $\log_{10} 2$ is irrational.

ASSUME
$$log_{10}^{2}$$
 RATIONAL

ie log_{10}^{2} = $\frac{a}{b}$ WHERE $\frac{a}{b}$ IS SIMPLIEST FORM

 $2 = 10^{\frac{a}{b}}$
 $2^{\frac{b}{a}} = 10^{\frac{a}{b}}$
 $2^{\frac{b}{a}} = 2^{\frac{a}{a}}$
 $2^{\frac{b}{a}} = 2^{\frac{a}{a}}$
 $2^{\frac{b}{a}} = 2^{\frac{a}{a}}$

: CONTRADICTION OF log_{10}^{2} RATIONAL

i. log_{10}^{2} IRRATIONAL

(b) Prove, by exhaustion, $(n+1)^3 \ge 3^n$ where n is a counting number ≤ 4 . [4]

$$n=1$$
 $2^{3} > 3'$ TRUE
 $n=2$ $3^{3} > 3^{2}$ TRUE
 $n=3$ $4^{3} > 3^{3}$ TRUE
 $n=4$ $5^{3} > 3^{4}$ TRUE

$$-1. (n+1)^{3} > 3$$
 $n \le 4$

[4]

5. (5 marks)

Prove, by mathematical induction, that $n^3 + 2n$ is divisible by 3 for any positive integer n.

LET
$$n=1$$
 $1^3+2(1)=3$.: DIVISIBLE BY 3

ASSUME TRUE FOR $n=k$
ie $k^3+2k=3m$

PROVE TRUE FOR
$$n = k+1$$

ie PROVE $(k+1)^3 + 2(k+1)$ DIVISIBLE BY 3

 $(k+1)^3 + 2(k+1)$
 $= k^3 + 3k^2 + 3k + 1 + 2k + 2$
 $= k^3 + 2k + 3k^2 + 3k + 3$
 $= 3m + 3(k^2 + k+1)$
 $= MULTIPLE OF 3$.

6. (7 marks)

Simplify the following complex expressions leaving the answer in the form a + bi.

(a)
$$6-7i-(2-4i) = 4-3i$$
 [2]

(b)
$$\frac{4+3i}{1-2i} \times \frac{1+2i}{1+2i}$$

$$= \frac{4+8i+3i-6}{1+4}$$

$$= -\frac{2}{5} + \frac{11i}{5}$$
[3]

(c)
$$\frac{-i}{i^3} = \frac{-i}{i \cdot i^2}$$

$$= \frac{-i}{i \cdot i^2}$$

$$= \frac{-i}{i \cdot i^2}$$

7. (8 marks)

(a) One root of the equation $z^2 + az + b = 0$, where a and b are real constants, is 4 - i. Determine the value of a and b.

$$(3-(4-i))(3-(4+i))$$

$$=(3-4+i)(3-4-i)$$

$$=3^{2}-43-3i-43+16+4i+i3-4i+1$$

$$=3^{2}-83+17$$

$$a = -8$$

$$b = 17$$

(b) Solve the equation $3z = (7+2i)^2 - \overline{z}$ for the complex number z. (Hint: let z = a + bi)

$$33+3=(7+2i)(7+2i)$$

 $3(a+bi)+a-bi=49+14i+14i-4$
 $4a+2bi=45+28i$

Re
$$4a = 45$$

 $a = \frac{45}{4}$

$$Im 2b = 28$$

 $b = 14$

[4]

8. (4 marks)

Given z = 3 - 4i, draw each of the following on the Argand diagram below. Clearly label each answer.

(a) \overline{z} [1]

(b) i^3z [1]

[1]

(d) $i\operatorname{Re}(z)$ [1]

9. (**7** marks)

Use mathematical induction to prove the following conjecture:

$$1 + (1+x) + (1+x)^{2} + \dots + (1+x)^{n-1} = \frac{(1+x)^{n-1}}{x}, \quad n \ge 1, n \text{ a counting number.}$$

$$LET \quad n = 1 \qquad 1 = \frac{(1+x)^{-1}}{x}$$

$$| = 1 \qquad 7RUE$$

$$ASSUME \quad TRUE \quad FOR \quad n = R$$

$$| 2 \qquad (1+(1+x)^{2} + (1+x)^{2} + \dots + (1+x)^{2} - (1+x$$

$$-1 \cdot (1 + \chi \chi) + (1 + \chi \chi)^{2} + \dots + (1 + \chi \chi)^{N-1} = \frac{(1 + \chi)^{N-1}}{\chi}$$

$$= \frac{(1 + \chi)^{N$$